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We report an updated measurement of the top quark mass obtained from pp̄ collisions at
√

s =
1.96 TeV at the Fermilab Tevatron using the CDF II detector. We calculate a signal likelihood
using a matrix element integration method with a Quasi-Monte Carlo integration to take into
account finite detector resolution and quark mass effects. We use a neural network discriminant
to distinguish signal from backgrounds. Our overall signal probability is a 2-D function of mt and
∆JES, where ∆JES is a shift applied to all jet energies in units of the jet-dependent systematic error.
We apply a cut to the peak value of individual event likelihoods in order to reduce the effect of
badly reconstructed events. This measurement updates our previous measurements to use 5.6 fb−1

of integrated luminosity, requiring events with a lepton, large 6ET , and exactly four high-energy jets
in the pseudorapidity range |η| < 2; we also include events containing a loose muon to increase the
total data sample. We require that at least one of the jets is tagged as coming from a b quark, and
observe 1263 total events before and 1087 events after applying our likelihood cut. We find mt =
173.0 ± 0.7 (stat.) ± 0.6 (JES) ± 0.9 (syst.) GeV/c2, or mt = 173.0 ± 1.2 (tot.) GeV/c2.
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I. INTRODUCTION

The top quark mass is an important parameter in the Standard Model, as a precision measure-
ment of the top quark mass (along with the mass of the W boson) provides our best means for
constraining the value of the Higgs boson mass. This note describes a precision measurement of
the top quark mass performed using a matrix element integration method. For each event we
obtain the likelihood of observing that event in our detector as a function of the true top mass mt

by performing a Quasi-Monte Carlo integration over 19 kinematic variables.
This is an update of our previous analyses [1–5] to use 5.6 fb−1 of data collected from pp̄ collisions

at the Fermilab Tevatron using the CDF II detector, as described in [6]. We search for events in
which tt̄ pairs are produced, each decays into a W boson and a b quark, and then one W decays
into a neutrino and a lepton (meaning, in this paper, an electron or muon) and the other W decays
into a qq̄′ pair; this is called the “lepton + jets” channel.

We use a neural network constructed from a variety of event variables to distinguish between
signal and background events, and employ a cut on the peak likelihood for a given event for
additional rejection of background and poorly-modeled events.

The largest systematic uncertainty in the measurement of the top mass is due to uncertainties
in the jet energy measurements. A recent technique to deal with this uncertainty consists of
introducing a second parameter dealing with the jet energy scale (JES) into the likelihood [1–
5, 7–11], allowing us to use the information contained in the W which decays into qq̄′ on an
event-by-event basis to determine the jet energy scale. Most of the systematic uncertainties on the
jet energy scale are thus included in the statistical uncertainty of the result. This technique has
proven to significantly reduce the total error due to the JES. In this analysis, we use ∆JES, the
shift in the jet energies in units of the jet-specific systematic uncertainty, as our second parameter
in our likelihood.

II. DATA AND MONTE CARLO SAMPLES

In this analysis, we identify the top mass candidates in the lepton + jets channel by looking for
four high energy jets from the four quarks and a W decay into a lepton and a neutrino. Specifically,
for the lepton we require either an electron with ET > 20 GeV, a muon with pT > 20 GeV/c in
the central region of the detector, or a “loose muon” with pT > 20 GeV/c, where a loose muon is
a muon obtained not by the standard central muon trigger, but rather using a missing ET (6ET )
trigger; this allows us to accept muons in regions of the detector not covered by the main muon
systems. The neutrino is identified by requiring a 6ET > 20 GeV in the event. For the jets, we
require exactly 4 jets with ET > 20 GeV and pseudorapidity |η| < 2. The jet pT has been corrected
for inhomogeneities of the detector and nonlinear response of the detector as a function of particle
pT . In addition, at least one of the jets must be tagged as a b-jet using a secondary vertex tagging
algorithm.

Background to this signal consists of three main sources: events where a W is produced in
conjunction with heavy flavor (HF) quarks (bb̄, cc̄, or c), events where a W is produced along with
light quarks which are mistagged, and QCD events that do not contain a W boson but include
a fake lepton. There are also smaller contributions from diboson, Z → `` + jets, and single top
events.

We use a variety of Monte Carlo samples in constructing and evaluating our method. For signal
events, we use tt̄ events generated at a variety of top masses from 160 GeV/c2 to 184 GeV/c2 using
the PYTHIA Monte Carlo generator [12]. We also cross-check our analysis using tt̄ signal events
generated with the HERWIG generator [13]. For W+jets backgrounds, we use Monte Carlo events
generated using ALPGEN [14] for the generator and PYTHIA to perform the parton shower. The
single top backgrounds, which assume a top mass of 172.5 GeV/c2, use the MadEvent generator [15]
and PYTHIA for the parton shower, and the diboson backgrounds are generated with PYTHIA. All
Monte Carlo samples are then simulated using the CDFII simulation package. The non-W QCD
background is derived from data; to save time, we do not use separate samples for the Z+jets
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contribution, but rather increase the W+light flavor total to include this contribution. Table I
shows the individual contributions. For W+HF and W+LF the background was derived with the
method used for the cross section measurement [16], where overlaps in the samples with different
parton multiplicities are removed using the ALPGEN jet-parton matching along with a jet-based
heavy flavor overlap removal algorithm.

TABLE I: Expected contributions to the 5.6 fb−1 W+4 tight jet sample used.

CDF Run II Preliminary, 5.6 fb−1

Background 1 tag ≥ 2 tags
non-W QCD 50.1 ± 25.5 5.5 ± 3.8
W+light mistag 48.5 ± 17.1 1.0 ± 0.4
diboson (WW , WZ, ZZ) 10.5 ± 1.1 1.0 ± 0.1
Z → `` + jets 9.9 ± 1.3 0.8 ± 0.1
W + bb̄ 67.5 ± 23.9 12.9 ± 4.7
W + cc̄ 41.3 ± 14.8 1.9 ± 0.7
W + c 20.7 ± 7.4 0.9 ± 0.4
Single top 13.3 ± 0.9 4.0 ± 0.4
Total background 261.8 ± 60.6 28.0 ± 9.6
Predicted top signal (σ = 7.4 pb) 767.3 ± 97.2 276.5 ± 43.0
Events observed 1016 247

We find that the total number of expected background events in our data sample is Nbackground =
287.6± 68.4 events in 1263 observed events.

III. METHOD

For each event we obtain a likelihood distribution as a function of the top pole mass, mt, and
the shift in the jet energy scale, ∆JES. For each jet, the jet energy scale JES is defined by JES
= 1 + ∆JES ·σ(pT , η), where σ(pT , η) is the relative jet energy scale uncertainty for that jet as
estimated by the Jet Corrections Group; the JES relates the true pT of the jet to the measured pT

by pT,true = pT,meas · JES. The following likelihood expression is used:

L(~y | mt,∆JES) =
1

N(mt)
1

A(mt,∆JES)

24∑
i =1

wiLi(~y | mt,∆JES) (1)

with

Li(~y | mt,∆JES) =
∫

f(z1)f(z2)
FF

TF(~y | ~x,∆JES) |M(mt, ~x)|2 dΦ(~x) (2)

where ~y are the quantities we measure (lepton momenta and jet momenta); ~x are the parton-
level quantities that define the kinematics of the event; N(mt) is a global normalization factor;
∆JES is the parameter defining the jet pT shift; A(mt,∆JES) is the acceptance for tt̄ lepton+jets
events for the given values of mt and ∆JES; f(z1) and f(z2) are obtained from the momentum
probability distributions, i.e., the PDFs, for incoming partons z1 and z2; FF is the flux factor
for the PDFs; TF(~y | ~x,∆JES) are the transfer functions that predict the measured jet momenta
distributions from the parton-level quarks; dΦ(~x) indicates integration over the phase space of the
process including the necessary Jacobians; M(mt, ~x) is the matrix element for tt̄ production and
decay; and wi are the jet permutation weights assigned according to the presence of b tags. Finally
we sum over all possible jet permutations.

The PDFs f(z1) and f(z2) are summed over the appropriate combinations of incoming qq̄ and
gluons. The flux factor acts as a normalization for the PDFs. We use the CTEQ5L PDFs [17] in
our integration.
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We discuss the further components of the integration in the following sections.

Matrix element: We use the Kleiss-Stirling matrix element [18] which includes both qq̄ → tt̄
and gg → tt̄ production processes, as well as all spin correlations.

Integration variables: Assuming that the lepton momentum is well-measured, there are 19 di-
mensions in the phase space above. In our past analyses [11], we made further assumptions to
reduce the integration dimensionality. However, with the usage of Quasi-Monte Carlo integration
(discussed further below), we are able to integrate over the full phase space. We choose our set of
variables to be the two m2

t and m2
W on the leptonic and hadronic side of the decay, β = log(p1/p2),

where p1 and p2 are the scalar momenta of the two hadronic W decay products, the two-dimensional
vector pT of the tt̄ system, and finally the η, φ, and m for each of the four “proto-jets”, where
a “proto-jet” is a parton which has acquired mass due to the parton shower which produces the
final-state jet.
Quasi-Monte Carlo integration: The Quasi-Monte Carlo integration method differs from stan-
dard Monte Carlo integration in that it uses a quasi-random sequence to generate points. Formally,
a quasi-random sequence is one with a low discrepancy, where the discrepancy is a measure of the
uniformity of the sequence. This allows an improvement in the convergence of the integral over
the standard 1/

√
N convergence of standard Monte Carlo integration [19].

We employ QMC integration for 18 of the 19 variables. The leptonic m2
W requires special

treatment to avoid phase space singularities when ∂m2
W /∂pν

z = 0, so a grid-based procedure is
used in this dimension. Transfer functions are used for the pT and angles of the jets, while the
pT (tt̄) and jet mass variables are integrated over using priors derived from Monte Carlo.

To speed up the integration, we apply importance sampling schemes to many of the integration
variables; for instance, the top masses are sampled in the space of the cumulative distributions of
their Breit-Wigners. Also, in the permutation sum, less time is spent integrating permutations
which are identified to have a lower probability.

Transfer functions: The transfer functions connect the measured jets to the partons. We con-
struct our transfer functions by taking tt̄ → lepton + jets Monte Carlo events in a wide range of
masses and matching the simulated jets to their parent partons. In our analysis, we factorize the
transfer functions into separate momentum and angular parts. The momentum transfer functions
are built as probability distributions of the ratio of the pT of the jet to the pT of the parton,
while the angular transfer functions are built as probability distributions of ∆η and ∆φ, which are
the differences between the η and φ of the jet and the parton. Both the momentum and angular
transfer functions are built with dependence on the proto-jet pT and mass, and there are separate
transfer functions built for each of 4 separate bins of jet η as well as for b and light quarks.

Figure 1 shows sample pT and angular transfer functions.
An additional efficiency factor is also included in the transfer functions to account for the fact

that the transfer functions are built from a sample which is inevitably affected by acceptance
effects. This factor ensures that the transfer functions are correctly normalized even given these
effects.

Normalization: The normalization factor N(mt) is obtained by integrating the Kleiss-Sterling
matrix element together with the PDFs and the flux factor over the phase space formed by the
two initial and the six final state particles. Figure 2 shows the normalization used in our analysis,
with the HERWIG cross-section included for reference.

Acceptance: The acceptance A(mt,∆JES) is obtained from Monte Carlo events in which we
randomize the directions and momenta of the partons to create objects which should look like
final-state jets. We do this for all the values of the top mass and ∆JES over which the likelihood
function is defined, and then calculate the acceptance at each mt and ∆JES value to be the fraction
of these MC events which pass our selection cuts.

The advantage to this approach as opposed to using fully simulated Monte Carlo is that it does
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FIG. 1: Sample momentum (left) and angular (right) transfer functions.

not have events with an incorrect set of jets, and such events are excluded from the efficiency
calculations as well. Our probability model describes tree level signal events with the correct set
of jets; therefore, we cannot use fully simulated events which include effects not included in the
model. Furthermore, we can generate our acceptance from a much larger sample of events, reducing
statistical fluctuations in the resulting curve. Figure 2 shows the 2-D acceptance as a function of
mt and JES.
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FIG. 2: Normalization and acceptance used in our integration.

IV. BACKGROUND DISCRIMINATION AND HANDLING

Our integration method calculates the likelihood for an event under the assumption that it is a
signal event. Therefore, we need a mechanism to identify background events so we remove their
contribution from the final likelihood.
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FIG. 3: The distributions of our hybrid variable for signal and background Monte Carlo events. The solid
lines indicate signal events at various masses, while the dashed lines indicate various types of backgrounds.

We identify background events using a neural network. Our neural network uses ten inputs: the
PT for each of the four leading jets; the ET of the lepton; the missing ET , 6ET ; HT , the scalar
sum of the jet transverse energies, lepton transverse energy, and missing ET ; and three variables
describing the shape of the event: the aplanarity, defined as 3/2 the smallest eigenvalue of the
momentum tensor Θab =

∑
i pi

api
b/

∑
i |~pi|2; DR = ∆Rmin

ij · min(p(i,j)
z )/p`

T , where ∆Rmin
ij is the

smallest ∆R between any pair of jets; and HTZ =
∑4

i=2 |pi
T |/(

∑4
i=1 |pi

z|+ |p`
z|+ |pν

z |), the ratio of
the scalar sums of the transverse momenta (excluding the leading jet) to the longitudinal momenta.

The neural network is trained to separate tt̄ events with a mass of 170 GeV/c2 and W + bb̄
background; we then cross-check the neural network with other signal masses and background
types to make sure that the output shape is not dependent on the signal mass present.

Figure 3 shows the neural network output for a variety of different samples. We then compute
the background fraction for this event as fbg(q) = B(q)/(B(q) + S(q)), where the background and
signal distributions are normalized to their overall expected fractions.

Next, we need to use this discriminant to remove the background contribution from our total
likelihood to recover our signal likelihood. We compute the average likelihood for background
events (computed, like all of our events, under the assumption that they are signal) from Monte
Carlo and subtract out the expected contribution, where nbg is the expected number of background
events:

log Ltot =
∑

i

(log Li)− nbg log L(background)

We can rewrite our previous equation in terms of the individual per-event background fraction
to obtain our final likelihood formula:

log Lmod(mt, JES) =
∑

events

[log L(mt, JES |signal)− fbg(q) log L(mt, JES |background)]

These two expressions are equivalent if the events follow their expected distributions. However,
the advantage to using fbg per event rather than the total of nbg is that if there are more or fewer
background events in our sample than expected, fbg should be able to capture some of this change.

In addition, there is another class of undesirable events which is not handled by the above
method. These are events in which a tt̄ pair is produced, but where the final observed objects in
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FIG. 4: Distribution of the log-likelihood peak value for “good signal”, “bad signal”, and background
events in Monte Carlo.

our detector (the jets and lepton) do not all directly come from the tt̄ decay products. We call
these events “bad signal” events. These exist due to a variety of causes (extra jets from gluon
radiation, misidentified dilepton or all-hadronic events, W → τ decay, etc.) and comprise roughly
35% of our total signal (for a signal mass of 172.5 GeV/c2, we see that 36.8% of 1-tag and 32.4%
of >1-tag events are “bad signal”). In order to deal with these events, we implement a cut of 10 on
the log of the value of the peak of the likelihood curve. Table II shows the efficiency of this cut for
“good signal” events, “bad signal” events, and background events. Figure 4 shows the distribution
of the log-likelihood peak values for the three classes of events in Monte Carlo.

TABLE II: Efficiency of the likelihood cut at a value of 10.

Type of event Total 1-tag >1-tag
Good signal 96.3% ± 0.2% 96.1% ± 0.2% 96.8% ± 0.3%
Bad signal 79.2% ± 0.4% 78.7% ± 0.5% 80.7% ± 0.9%
Background 72.7% ± 0.3% 72.9% ± 0.4% 70.9% ± 1.0%

V. TOP MASS EXTRACTION

Our 2-D likelihood gives us the joint likelihood of observing the events that we see as a function
of the top mass mt and the jet energy scale ∆JES. In order to obtain a final result, we treat the
∆JES as a nuisance parameter and eliminate it using the profile likelihood. In the profile likelihood
method, we simply take the maximum value of the likelihood along the ∆JES axis for each mt

value. That is:

Lprof(mt) = max
j∈∆JES

L(mt, j)

This gives us a 1-D likelihood curve in mt only. We then follow the normal procedure of taking
the peak as our result and descending 1/2 unit of log-likelihood from the peak to determine the
uncertainty.
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We test our method using Monte Carlo samples of simulated tt̄ events and four backgrounds
(W+heavy flavor, W+light flavor, QCD, and single top), as described in section II. We construct
pseudo-experiments (PEs) from the Monte Carlo using a Poisson average of 1089.3 events per
pseudo-experiment, the number of events we expect to have after applying the likelihood cut. We
run 2000 PEs for each signal top mass value and compute the resulting average measured mass,
bias, expected statistical uncertainty, and pull width. Figure 5 shows the results.
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FIG. 5: Pseudoexperiment results using fully simulated signal and background events after applying a
likelihood cut, mean of 1089.3 events/PE. Top left: reconstructed vs. input top mass; top right: bias vs.
input top mass; bottom left: expected uncertainty vs. input top mass; bottom right: pulls vs. input top
mass.

We also test and calibrate our measurement by running on samples where the input ∆JES has
been shifted away from its nominal value of 0. Figure 6 shows the results of the ∆JES measurement
for these shifted samples, as well as the dependence of the measured mass on the input ∆JES. We
see that there is a small dependence, which we must account for in our final calibration.

Based on the results from these PEs, we determine the calibration for our final measurement.
First we use the measured bias and slope for the mass and ∆JES measurements to calibrate these
quantities individually; then, we use the measured slope of the output mt as a function of ∆JES as
a final correction. Our final calibration formula is thus:

∆mcalib = (∆mmeas + 0.517)/0.969− 0.33 · (∆JES)calib
(∆JES)calib = ((∆JES)meas + 0.300)/0.902

We also correct the measured uncertainties using the slope and pull widths obtained:

(σm)calib = (σm)meas × 1.161/0.969
(σ∆JES)calib = (σ∆JES)meas × 1.097/0.902
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FIG. 6: Pseudoexperiment results using fully simulated signal and background events after applying a
likelihood cut, mean of 924.5 events/PE. Top left: measured ∆JES vs. input ∆JES; top right: ∆JES pulls
vs. input ∆JES; bottom left: measured top mass vs. input ∆JES for different mt values; bottom right:
measured shift in mt vs. input ∆JES.

VI. RESULTS

In the data we find a total of 1087 events which pass all of our cuts (including the likelihood
peak cut): 854 1-tag events and 233 >1-tag events. Combining these likelihoods, we use the
profile likelihood to extract a top mass value, which we then correct using the previously-described
calibration, to measure a mass of 173.0± 0.9 GeV/c2. We can use a similar procedure to extract a
∆JES measurement of 0.15± 0.18 σ. Figure 7 shows the resulting 2-D likelihood from each subset
of the events after the calibration has been applied.

This uncertainty combines both the statistical uncertainty and the uncertainty due to JES
uncertainty. To separate these two causes, we take the mt likelihood in the ∆JES = 0 bin and
evaluate the uncertainty in the resulting 1-D likelihood. This yields an uncertainty of 0.7 GeV/c2.
Thus, we conclude that the remaining uncertainty of 0.6 GeV/c2 is due to the JES and report a
final value of:

mt = 173.0± 0.7 (stat.)± 0.6 (JES) GeV/c2. (3)

Figure 8 shows the expected statistical uncertainty from Monte Carlo events at a top mass
of 172.5 GeV/c2, with the measured uncertainty from data shown as the black arrow. 62% of
pseudoexperiments show a lower uncertainty than measured in the data.

As a cross-check, Figure 9 shows the comparison of the log-likelihood peak value of the likelihood
curves between data and Monte Carlo. A Kolmogorov-Smirnov test on the agreement between the
two shows a confidence level of 0.93, showing that the likelihood peak information is well-modeled
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FIG. 7: Measured 2-D likelihood on the data events. The top plot shows the likelihood on the full
range used in our integration. The bottom plot shows the contours corresponding to a 1-σ, 2-σ, and 3-σ
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of maximum likelihood.

by Monte Carlo and hence that our likelihood cut procedure is valid.
Our systematics are summarized in Table III. Here is a brief description of the major systematic

sources:
We assign a systematic uncertainty for the uncertainty in our calibration constants as described

previously.
Our analysis is tested and calibrated on PYTHIA Monte Carlo. We evaluate a systematic due

to the generator by comparing the results from HERWIG and PYTHIA samples.
Systematics due to initial-state radiation and final-state radiation are evaluated using Monte

Carlo samples where the amount of ISR and FSR has been increased and decreased.
While the 2-D measurement is designed to capture any changes in the ∆JES, the jet energy
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FIG. 9: Comparison of the log-likelihood value of the peak of likelihood curves for data and Monte Carlo.

systematics are derived from several separate sources of uncertainty, which may exhibit different
behavior with respect to jet pT and η than the overall uncertainty. We thus vary the jet energies
by one σ for each of the separate sources. The resulting shifts are added in quadrature to obtain
our residual JES systematic uncertainty.

We account for additional uncertainties in the jet energy scale for b-jets by considering three
sources of uncertainty. First, we measure the uncertainty due to the semileptonic decay fraction by
varying it by ±1σ. Second, we measure the the uncertainty due to the b fragmentation model by
trying two different b fragmentation models [20]. Thirdly, we measure uncertainty due to differing
calorimeter response by varying b-jets in the Monte Carlo by 0.2% and measuring the resulting top
mass.
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TABLE III: Total list of systematics.

CDF Run II Preliminary, 5.6 fb−1

Systematic source Systematic uncertainty (GeV/c2)
Calibration 0.10

MC generator 0.37
ISR and FSR 0.15
Residual JES 0.49

b-JES 0.26
Lepton PT 0.14

Multiple hadron interactions 0.10
PDFs 0.14

Background modeling 0.34
Color reconnection 0.37

Total 0.88

We also include a systematic to reflect our uncertainty in the lepton PT measurement, which is
obtained by varying the lepton PT by its uncertainty of 1% and measuring the resulting change in
top mass.

Since the Monte Carlo samples are generated with a lower instantaneous luminosity and hence
fewer multiple hadron interactions per event than the most recent data, we evaluate a potential
systematic due to this source by measuring the top mass as a function of the number of interactions
in the event and multiplying the resulting slope by the difference in the number of interactions
between MC and data. This systematic also includes an uncertainty to reflect the uncertainty in
applying the corrections for multiple hadron interactions, which are derived from minimum bias
events, to top events.

We evaluate the systematics due to the parton distribution functions (PDFs) used in the matrix
element integration by comparing different PDF sets (CTEQ5L and MRST72 [21]), varying αs,
and varying the eigenvectors of the CTEQ6M PDFs.

There are several uncertainties associated with our background method. First, we vary each of
the independent background sources (W + heavy flavor, W + light flavor, QCD, single top, and
diboson) by their uncertainty and measure the resulting change in top mass. We also add an un-
certainty in the total background fraction due to the effect of JES. Third, we check the systematics
due to our average background likelihood shape by dividing the sample into two subsamples (one
with even-numbered events, and one with odd-numbered events), building the average shape from
one subsample, and measuring the top mass on the other subsample. Finally, we use background
samples with a different Q2 scale used by the Monte Carlo generator to evaluate the systematics
due to this source. We also include an uncertainty for limited background statistics in the MC.

As PYTHIA is a leading-order Monte Carlo generator, the fraction of events resulting from gg
annihilation is approximately 5%, while the actual fraction in data is estimated to be 15±5%. We
include a systematic uncertainty to account for this difference.

This analysis also includes an updated estimate of the systematic uncertainty due to color
reconnection effects, which we measure by taking the difference between two PYTHIA 6.4 tunes
with and without color reconnection enabled [21].

VII. CONCLUSIONS

In conclusion, our measured top quark mass in 5.6 fb−1 with 1087 events passing all our cuts is:

mt = 173.0 ± 0.7 (stat.) ± 0.6 (JES) ± 0.9 (syst.) GeV/c2

mt = 173.0 ± 0.9 (stat. + JES) ± 0.9 (syst.) = 173.0 ± 1.2 (total) GeV/c2.
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