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= Basic description of the Multivariate Template Method (MTM)
analysis

= Distinguishing features of the analysis

= Top mass reconstruction technique

= How we compute the likelihood

= Choices we made for our data measurement
= Thetop mass result

» Discussion of systematics

John Freeman 2 DPF 2004, UCR, 8/30/04



Overview of the Analysis

» We measure the top mass in the lepton + jets channel
(tt — bqgbly) using 1 or 2 b-tagged jets

= Anaysisworks as follows:

= Extract top mass and other observables from each event

= Construct density functions of these observables using events
from both background and signal MC samples

s Mass measurement is taken from the joint likelihood of our
events calculated with these density functions
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Analysis Features

= A number of features distinguishes MTM from the other methods of
top mass measurement

= \With the goal of reducing systematic error, a kinematic fit to the
hadronic W mass includes the jet energy scale (JES) as avariable

o Statistical error isreduced by estimating the probability that the
correct jet-parton assignment in an event was selected

= Using event variables besides the reconstructed mass in the
likelihood function should provide more info + improve
signal/background discrimination

= \WWe employ KDE, a non-parametric method of density
estimation, in our likelihood calculation
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Mass Reconstruction weec

= |n each event, for every jet-parton Fitted JES Distributions

permutation we use the JES as a 150 frdf Sraraard M =175 SV MC
. ] ) ) ets shifted by —1 sigma
constrained parameter in a kinematic :
W-mass fit. We keep the 1007
permutation with the best x>. Events
50
= Thisservesto improve the ]
systematic error, but also increase o —
the statistical error 0.8 s 1.2
= The upper plot indicates that for N
correctly chosen permutations, the ¢ Total Error
systematic Is compensated by the P S N

JES shift

= Thelower plot shows that by altering
the JES constraint, we can alter the I
resulting tradeoff in errors | JES Constraint

John Freeman 5 DPF 2004, UCR, 8/30/04

Syst Error

O T T T T[T T T[T T TTTT 7T
(=]
-t
(=]
-
(4]

&



Overview of the Likelihood

N
L(my) = H(beb(m.,;F:r;) (1 — fo)Ps(my,zi,my))
1=1
Background: Py(m,z) = Z a;B;(m,x), Z a; =1
bg types bg types
Signal: P m €, mf Z cj jm! m, r) Z Cj =1

sig types sig types

= Dengity function templates are assigned to classes of background
and signal (B'sand S's, respectively)

= These are functions of the reconstructed mass (m) and any other
observables we add (X)

= Thelikelihood of one event isthe weighted sum of its probability
IN each template
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Separate Signal Templates =

= Thesignal isdivided into three templates. one for
events, one for correct jets, bad permutation (BP), and one for
incorrect jets (1J) events. GP + BP = CJ, “Correct Jets’

= |nanideal situation (no background and perfect assignment of
signal events to their corresponding templates) there could be an
Improvement in top mass resolution of ~ 1.7
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Estimating an Event's Signal -4

Template Probability

* \We take the probability that an event 06 ]
belongs to CJ ssmply from the ratio of CJ 059 } } ! %
eventsto al eventsin our MC filesat agiven 0.58 ] l }{ .
top mass n5?}”* : +
* Then, we split the remaining probability into EZE .
GP and BP probabilities by employing a 140 160 180 200
formulawhich uses the difference between Vit (GeV)
the best y* and the others ap

PGP —
* Finally, a Bayesian update of the GP S12 ajexp (— REE I ))

probability is performed using event angle
variables related to the leptonic W
polarization and thett spin correlations
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= |nour likelihood, rather than use a
fitted function to represent a
continuous density function using
a discrete # of MC points, we use
KDE

= Thistechnique performs a
weighted sum of the surrounding
“training points’ to estimate the
density

= |tsadvantageisthat it frees us
from making assumptions asto the
form of the density — especially
useful in higher dimensions!
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Choosing a Variable Set

= Using the Kolmogorov-Smirnov distance and K-divergence tests,
we attempt to determine which variables do the best job at
distinguishing signal from background

_ [ CDF Run Il preliminary, 162 pb’ KS
= Wefind that the scalar sum of : - N 1800 GaVic
the transverse momentaof the 3} ?
leading four jetsis the best 25
choice 2K

= For our likelihood, then, we use 1s
2-d templates of reconstructed i |
mass and this momentum
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Choosing a JES constraint =2

= Using candidate variable sets suggested by divergence tests, we run
thousands of PE's to determine what value to tune our JES constraint to.

= JES constraint yields lowest _1
aror at 0.07 - CDF Run Il preliminary, 162 pb

~ Mt/ minMijNM
= Relative to the expected
error of asingle top mass
measurement, there appears
to be no preferred choice of
variables
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Our Measurement
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Comparison of Data w/ MC
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= Here we see a comparison of our data sample with a normalized
combination of signal and background MC. Results arein
reasonabl e agreement.
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Systematics

Asyou can see from thistable, the
greatest contribution to the systematic
error overwhelmingly comes from the
jet energy measurement!

The jet energy systematic error is
being worked on by many at CDF and
should improve soon
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FSR 0.6
PDF 0.6
Background Shape 0.4
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Fitting Procedure 0.7
Total 6.8
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Conclusions

= MTM techniques allow usto find an optimal systematic-statistical
error tradeoff

= Qur likelihood calculation isimproved by estimating probabilities
that a given event belongs to a given template

= \Welook forward to:

= Re-tuning the JES constraint and re-examining our choice of
variables as statistics improve

= Adding new features to our analysis
= And improving on our current blessed measurement of

179. 6+6 3(Stat ) £ 6.8(syst.) GeV/c?
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Bayesian Update

= |n order to increase the amount of info our GP/BP probabilities are
based on, we apply Bayes theorem to X, our info variable of
Interest, in the standard way:

| L kP(GP|C])
P(GP|C], X) = kP(GP|CJ)+ (1= P(GP|CJ))
where
_ Px|GP)
o P(X|BP)
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Alpha-Skew Tests

= The genera alpha-skew formulais asfollows:

d(p1,p2) = /dﬂ: pi(z) x log (p1(z)/[a- p2(z) + (1 — ) - p1()])
ds(p1,p2) = d(p1,p2)+ d(p2,p1)

= Weuseavaluefor alphaof 0.5. Thisis known as a“K-divergence’.
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The Data Set

=  Aswe use the cross-section group's background fraction
calculations in our analysis, we attempt to use their data set

= Criteriainclude;
= 35jets (4"jet > 8 GeV)

= \Wrong beam line runs removed, but wrong luminosity
measurement run accepted

= Trident eectrons removed

= All jet permutations used have to agree with the SV X tag
Information

= Phoenix &l ectrons non reconstructed and therefore not used in
the dilepton veto

At a JES constraint of 0.07, we end up with 33 events
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Smoothing the Likelihood

* Since we only have a discrete number of top masses in our signal
MC's, it's necessary to interpolate smoothly between the likelihood
values of an event

* We do this by employing local Log L
polynomial regression 7 WJ’/\N‘.
e For severa events, each eventis - “'/_,\\‘\i

interpolated separately and then -1

summed 127
—13~ )
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