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� Fundamental parameters of 
Standard Model

� Sensitive to Higgs mass and 
new physics through 
radiative corrections

� Precision measurements

� Theory challenges

� Standard Candles for 
detector calibration

� Lepton identification

� Energy/Momentum scale

� Luminosity

� Backgrounds to many new 
physics signals

TeVatron Run II, LHC, ILC

Motivation
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� Accelerators powerful enough to produce W, Z, top

� Status

� W and Z physics

� W and Z production cross-section

� W width

� W charge asymmetry

� W mass

� Diboson production and Triple Gauge Couplings

� Top physics

� Top production cross-section

� Top decays

� Top mass

� Standard Model (and beyond) global fit

Will show selected 

results! See parallel  

top and 

electroweak 

sessions for all the 

details!

Outline
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e+e- ILC

91-1000 GeV

L =25 miles?

ppbar SPS

600 GeV

C=4.4 miles

1985        1990        1995        2000        2005        2010 2015        2020

W, Z boson

discovery

e+e- LEP

91-209 GeV

C=16 miles

e+e- SLC

91 GeV

L=2 miles

Top quark

discovery

ppbar Tevatron

1.80-1.96 TeV

C=3.9 miles

???????

discovery

pp LHC

14 TeV

C=16 miles

Accelerators:
The decade of the Hadron Collider



p. 5

�(W�l�)

�(tt)

mt=175 GeV

� Drinking from a firehose

� Collision rate huge

� Tevatron – every 396 ns

� LHC – every 25 ns

� Total cross section huge ~60mb

� 2-3 interactions per collision
� Tevatron L=1032cm-2s-1

� LHC initial/low lumi L=1033cm-2s-1

� 20 interactions per collision
� LHC design/high lumi L=1034cm-2s-1

� Panning for gold

� W, Z, top are relatively rare
� Need high luminosity

� Trigger is crucial
� Distinguish using high pT leptons

Physics at a hadron collider
is like…
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August 

2004

Run I best

August 

2003

August 

2002

� Peak luminosity

� x2 increase since 2003

� Reached L=1032cm-2s-1

� Future

� Run until 2009

� Deliver 4-9 fb-1

proton-antiproton
�s=1.96 TeV

TeVatron Performance
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Top & Electroweak Physics need
Trigger

Electron/Muon/Tau identification
Tracking and b tagging

Calorimetry

Summer 2004  results
~200pb-1

Over 200 pb-1 more this year
Winter 2005 results
~400pb-1

TeVatron Experiments
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Reuse LEP tunnel – circumference 16 miles

D
e

p
th

~
1

0
0

m

� Goal: find the Higgs boson or new physics!
� Initial/low lumi L<1033cm-2s-1 for first 3 years 2007-2009 

� <2 min bias/collision
� 10 fb-1/year
� Time for precision top and electroweak measurements

� Design/high lumi L=1034cm-2s-1

� ~20 min bias/collision
� 100 fb-1/year proton-proton

�s=14 TeV

Large Hadron Collider (LHC)
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CMS cavern
Hadronic
Calorimeter

ATLAS cavern

LHC detectors 
under construction
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� Decision to choose superconducting “cold” technology

� Last week! See www.interactions.org/linearcollider/

� Design parameters

� Total cross-section small at high energies

� Need very high luminosities

� Linear 

� Need high acceleration gradients

Precision measurements of Higgs

or new physics…

International Linear Collider

e+e-

200-500 GeV

Upgrade to 1 TeV

International Linear Collider (ILC)
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Trigger on leptonic decays
at Tevatron and LHC

Clean event signatures
with low background

BR~11% per mode for W � � �
BR~3% per mode for Z� �+�-

W and Z Physics

Standard Candles

at Tevatron and LHC

W/Z cross-sections � W width

W/Z asymmetries

W mass

WW, WZ, ZZ, W�, Z�
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W�e�
1 electron ET>25 GeV, |�|< 2.8(1.1)

High MET> 25 GeV

W���
1 muon pT>20 GeV, |�|< 1.0(1.5) 

High MET>20 GeV

Z0�e+e-

2 electrons ET>20 GeV

Z0��+ �-

2 muons pT>20(15) GeV

W�e� Z0��+ �-

CDF(D0) W and Z Event Selection
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�⋅⋅

−
=⋅

LA ε
σ bkgobs NN

B
Uses σσσσinelastic

= 60.7±±±± 2.4 mb (CDF+E811)

Additional luminosity uncertainty of 6% is 166pb for W and 15pb for Z

hep-ex/0406078

Precision         2.2% 2.4% 2.6%  3.9%

W and Z production cross section
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C. Anastasiou et al
hep-ph/0312266

� Key quantity is boson rapidity, y

� Calculate A(y) from PYTHIA with 
GEANT detector simulation
� Dominant systematics

� ET,PT scale <0.4%

� Detector material < 1%

� Convolve with NNLO differential 
cross-section
� First complete NNLO 

computation of a differential 
quantity for high energy hadron
collider physics
� Powerful new calculation, 

applicable to many observables

� Important for LHC

� Dominant systematics
� PDFs CTEQ6M (0.7-2.1%)

AAAA: geometric and kinematic acceptance
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� Precision measurements vs
precision NNLO predictions

� Theoretical uncertainty 2%

� Experimental uncertainty 2%

� Luminosity uncertainty 6% from 
total cross section

� Future: instead use W and Z as a 
luminosity monitor at  LHC

J. Stirling, ICHEP’04

S. Frixione, M. Mangano
hep-ph/0405130

Experiment vs theory
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longer Q2

extrapolation
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LHC-HERA workshop
on PDFs

PDFs at LHC
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Indirect Measurement of W Width

Extract W boson widthExtract W boson width

CDF 2.079 CDF 2.079 ±±±±0.041 GeV

R = 10.82 ±±±± 0.16 ±±±± 0.28D0    e     177pb-1

R = 10.92 ±±±± 0.15 ± 0.14CDF e+µµµµ 72pb-1

Measure W/Z cross section ratio: many Measure W/Z cross section ratio: many systematicssystematics cancelcancel
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� u quark carries more of 
proton momentum, on 
average, than d quark

� W+ boosted along proton 
beam direction

� W- boosted along anti-
proton beam direction

� W charge asymmetry 
sensitive to u/d quark ratio 
at large x

� Count e+ and e- vs �

� High ET sensitive to PDFs

� Calorimeter- seeded 
Silicon tracking for 
electrons with |�|>1

� Charge mis-id < 2%
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W charge asymmetry
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A. Freitas et al
hep-ph/0311148
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Prediction

�MW 

(MeV)  

LC

LHC

TeV

Now

2.5

0.1

1.3

4.3

Experiment

�Mtop

(GeV)

Radiative corrections make W mass sensitive to top and Higgs mass

Recent theoretical calculation of full two-loop electroweak corrections

Standard Model prediction for W mass
dominated by error on top mass

Contribution from 
error on top mass

0.04% precision

Standard Model prediction for W mass
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Final Run I hep-ex/0311039
First Run II soon!

Limited by uncertainty from 
Final State Interactions in 4q

H. Ruiz ICHEP’04

Experimental measurements of W mass
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CDF RUN II

PRELIMINARY

200pb-1

pT(�) (GeV)

71k W���
|��|<1

CDF RUN II

PRELIMINARY

200pb-1

(GeV)

|��|<1

)cos1(2 νφν

�

� −= TTT EEM

71k W���

MW

Direct
�W

Measure W mass from fit to

� W Transverse mass

� Hadronic recoil model

� Muon PT or electron ET 

� W pT model 

Run II fit results are still blinded!

� Statistical error 50 MeV
per channel

Dominant systematic uncertainty

from lepton energy/momentum

scale and resolution

� Most time and effort spent 
on detector calibration

� This is a very difficult and 
demanding measurement

Tevatron/LHC
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12-18Selection bias

9525Backgrounds

101010�W

121111QED corrections

81515PDFs

151520PT(W)

353735Recoil model

192520Lepton resolution

567585Lepton Energy scale

6065100W statistics

D0 W�e�CDF W�e�CDF W���TeVatron Run 1

C
o
rre

la
te

d
!

Combined Run I uncertainty 59 MeV
How do we reach 40 MeV per experiment in Run II?

And 15 MeV per experiment at LHC?
Most of the systematics are statistics-limited…get smarter with more data!

Run 1 W mass Systematic Uncertainties
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Some advantages to a hadron collider – many calibration samples!
And uncertainties decrease with higher statistics

Muon momentum scale/resolution 
use J/�, 	

cross-check with Z��+�-

Preliminary syst. 25 MeV !!! (87)

Electron energy scale/resolution
use E/p in W�e�

cross-check with Z�e+e-
Preliminary syst. 80 MeV (70)

Accurate model of detector material
important due to electron bremsstrahlung

Source of 55 MeV uncertainty
ATLAS/CMS take note!

Lepton Energy scale
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� QED radiative corrections

� Multiple QED radiation 

� QCD+QED(FSR) in RESBOS-A

� Transverse momentum resummation at small-x?

� TeVatron – may be visible at high rapidity

� LHC important everywhere

Q. Cao, C.P.Yuan hep-ph/0401026

C. Calame et al hep-ph/0402235

S. Berge et al., hep-ph/0401128
DPF parallel session

QCD & QED corrections
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� Direct reconstruction a la 
LEP above threshold
� Higher statistics with ILC 

in qqlv channel
� Experimental precision 5 

MeV but beam energy 
calibration important

� Indirect from WW cross 
section near threshold
� Experimental precision 6 

MeV with 100 fb-1 and 
polarisation

� But what is �s?
� Beam spread
� Beamstrahlung
� ISR

� Confident of 200ppm
� Working on techniques to 

reach required 50ppm

� Theory needs to reach 
0.12% accuracy.  Work 
needed but possible. 

WW pair production 
(10k events per LEP experiment)

W mass ILC
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� First observation of WW production at a hadron collider
� TGC - Hard to beat LEP with 40k WW pairs 
� Important background to Higgs search!

� Still searching for WZ

pbWW

pbWW

3.1

2.1

3.4

8.3

8.1
8.1

6.5
9.4

8.13)(

3.14)(

±±=

±±=

σ

σ

..%95@1.15)(

..%95@9.13)(

LCpbWZ

LCpbWZ

<

<

σ

σCDF
D0

D0 WZ����� candidate

WW, WZ, ZZ production
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� Photon pT – sensitive to TGC

� LHC with 30 fb-1 improve LEP limits by factor 3-10

pbW

pbW

3.17.63.19)(

3.27.17.19)(

±±=

±±=

γσ

γσ

pbZ

pbZ

3.05.09.3)(

4.06.03.5)(

±±=

±±=

γσ

γσCDF
D0

W
 and Z
 production
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q, l-

q’, ν

t

p p

b
W+

W-

b

q, l+

q’, ν

• Production Cross Section

• Production Kinematics

• Top Spin Polarization 

• Resonance Production

• Branching Ratios

• Rare Decays

• Non-SM decay (t�H+b)

• W Helicity

• Top mass

t

Top discovered by CDF and D0 in 1995
Very heavy!  Top mass = 178.0 ± 4.3 GeV

But only ~30 events per experiment
!!!Want more top events to study properties!!!

Run II � 30% higher at �s=1.96 TeV

Similar mass to 
Gold atom!

35 times 
heavier 

than b quark

Top Physics
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Single top via weak interaction

6.35.75.0180

7.46.75.8175

8.77.86.8170

- PDF NLO �(pb) +PDFmt (GeV)

0.88 ± 0.11 pb
10.6 ± 1.1 pb

1.98 ± 0.25 pb
246.6 ± 11.8 pb

<0.1 pb
62.0+16.6-3.6 pb

LHC �s=14 TeV
833 ± 100 pb

Bonciani et al 
hep-ph/0303085
Kidonakis et al 
PRD 68 114014

Z. Sullivan hep-ph/0408049                                      A.Belyaev et al PRD 63, 034012

85% qq 15% gg
10% qq 90% gg

Top pairs via strong interaction
TeVatron �s=1.96 TeV

0.8 events per hour
at recent lumi

0.8 events per second 
at initial/low lumi LHC

Top Production
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� Why is qq annihilation 
dominant at the TeVatron
but gg fusion at LHC?

� Why does cross section 
increase by x100 for only 
x7 increase in �s?

http://durpdg.dur.ac.uk/hepdata/pdf3.html

LHC

TeVatron

025.014

18.096.1

2/

≈=

≈=

≈

xTeVs

xTeVs

s

m
x t

Top pair production
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Top Decay

5% Dilepton
Both W � l� (l=e or �)

2 leptons
Missing ET

2 b-jets

30% Lepton+Jets
One W � l� (l=e or �)

1 lepton
Missing ET

4 jets (2 b-jets)

46% All hadronic
Both W � qq

6 jets (2 b-jets)

� BR(t�Wb) � 100% in Standard Model
� Top lifetime 10-25 s  (�(t�Wb)=1.5 GeV)

� No top mesons or baryons (�QCD=0.1 GeV)
� Top spin observable via decay products

Final States in Top Pair Production
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2 Lepton/isolated track pT>20 GeV
MET>25 GeV
MET>40 GeV if mll [76,106] GeV
	2 jets ET>20 GeV

Control Top

hep-ex/0404036 200 pb-1

pb
)(

6.1

2.1)(

4.2

1.20.7)(
syststat

tt ±±=σ

Observe 19 lepton/isolated track events in 200 pb-1

Estimated background 6.9 ± 1.7 events
Observe 13 lepton/lepton events in 200pb-1

Estimated background 2.7 ±0.7 events

Data

Shape PYTHIA MC
Normalisation
from data
Statistics-limited

Shape PYTHIA MC
Normalisation
from NLO
Campbell, Ellis 
PRD60 113006 (1999)

Background 
estimates

Dilepton
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L
e

p
to

n
s

/2
0

G
e

V

Kinematics consistent 
with Standard Model so far

HT is scalar sum of transverse energies
of jets, leptons and MET  

Dilepton kinematics
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CDF II Preliminary 195pb-1

1 Lepton pT>20 GeV
MET>20 GeV

	3 jets ET>15 GeV, |�|<2.0

Dominant background from W+jets

Go beyond single variable like HT

Combine seven kinematic variables 
in a 7-7-1 neural network to improve 
discrimination

Top shape from PYTHIA 

W+jets background shape from 
ALPGEN+HERWIG MC

Observe 519 events
Fit result  91.3 ± 15.6(stat) top events

pb)()( 6.11.17.6)( syststattt ±±=σ

Dominant systematics are
Jet energy scale uncertainty

Q2 scale for W+jets MC

Lepton+Jets
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are long-lived and massive may decay semileptonically

Top Event Tag Efficiency
False Tag Rate (QCD jets)

55%
0.5%

15%
3.6%

Identify low-pT muonVertex displaced tracks

Jet probability

Recall Standard Model  t�Wb branching ratio is ~100%
� Every top signal event contains 2 B hadrons

� Only 1-2% of dominant W+jets background contains heavy flavor

Improve S:B by exploiting knowledge that B hadrons

b-Tagging: Vertices and Soft Muons
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CDF II Preliminary

Control   Top

Mistags from W+light flavour
Parameterise from Data
f(ET, �, �, ntracks,
ET)

W+heavy flavour
Assume fraction 
well-predicted by MC

Diboson, Single top
Shape PYTHIA MC
Normalisation from NLO

pbtt
syststat )(

0.1
7.0)(

2.1
0.16.5)( ±±=σ

Observe 48 events with HT>200 GeV in 162 pb-1

Estimated background 13.8 ±2.0 events

)(

)(

jetsW

Wbb
LO

LO
Wbb

tagb
+

−
σ

σ
ε

Non-W from data

Background estimate
b-tag efficiency

	 1 b-tag

Lepton+Jets: 	1 SVX b-tag
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Njets

1 2 3 4
0
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200

Njets
1 2 3 4

0

50

100

150

200 QCD

Wl

Wc

Wcc

Wb

Wbb

VV
-τ+τ→Z

single top

ll→tt

l+jets→tt

Njets
1 2 3 4

0

5
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15

Njets
1 2 3 4

0

5

10

15

QCD

Wl

Wc

Wcc

Wb

Wbb

VV
-τ+τ→Z

single top

ll→tt

l+jets→tt

Double-tagged events – cleanest sample of top quarks!
Separate into 8 subsamples – single or double tag, 3 or 	4 jets, e or �

pbtt
syststat )(

9.1
4.1)(

3.1
2.12.7)( ±±=σ

CSIP algorithm
-count tracks with significant impact parameter
-slightly higher efficiency (61%), double mistag rate (1%)

Background estimate
b-tag efficiency

mistags
mistags

D0 II Preliminary 158-169 pb-1

D0 II Preliminary 158-169 pb-1

Single b-tag
Double b-tag

Lepton+Jets: Single vs Double b-tags
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pbtt syststat )()(

5.1
8.1 8.00.6)( ±±=σ

Avoid dependence on W+jets MC
Use 0-tag data to model W+jets background shape

Top acceptance
Background statistics

Top acceptance and shape
from PYTHIA MC

Try MC@NLO in future

However
Experimental systematics dominate:

jet energy scale uncertainy
b-tag efficiency uncertainty

Both will decrease with more data

Lepton+jets: 	1SVX b-tag & kinematics
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Leading Order Matrix Element
ALPGEN W,Z+
6 jets

MADGRAPH W+
9 jets

Good: Hard/wide-angle
Bad: Soft/collinear (ME diverges)

STOP!
Hard gluon 
described 
better by 
W+3p ME

Parton Shower MC
PYTHIA
HERWIG

Bad: Hard/wide-angle
Good: Soft/collinear

Interpolation needed!
“matching”

Veto hard emissions in Parton Shower
that are already accounted for by Matrix Element

“avoid double-counting”

CKKW for e+e- hep-ph/0109231
Adapted to hadron collider

PYTHIA/HERWIG S. Mrenna, P. Richardson hep-ph/0312274
SHERPA F. Krauss hep-ph/0407365

Alternative approach from M. Mangano

MC issue #1: How to use LO ME?
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W+�1 jet at LHC

Leading jet pT in W+	1 jet
Shape of Matched LO Matrix Element MC 

agrees with NLO prediction
Total rate still needs scale-factor

Important for modeling of kinematics at 
TeVatron and LHC

Add matched LO Matrix Element MC 
from 0 to n partons to obtain 

inclusive W+jet model!

SHERPA F. Krauss hep-ph/0407365

MC issue #1: how to use LO ME?
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For example,  W+4jets is O(�s
4)

Scale uncertainty of 10%  leads to 
40% uncertainty on total rate

ExperimentalistsHard emissions

Total rates

Soft&collinear emissions

Hadronisation

Outputs events

MC

TheoristsSoft&collinear emissions

Hadronisation

No events

Hard emissions

Total rates

NLO

NNLO

UsersBadGood

MCFM J. Campbell, R.K. Ellis http://mcfm.fnal.gov

NLO theory up to W+2jets and Wbb

Calculations still needed
W+3jets (a distant goal) Inclusion of b mass effects in Wbb

Nagy & Soper, hep-ph/0308127
Giele & Glover, hep-ph/0402152

W. Beenaker et al., hep-ph/0211352
S. Dawson et al., hep-ph/0311216

W+jets Heavy flavour fraction at NLO
J. Huston, J. Campbell hep-ph/0405276

MC � NLO = Ø ?
(From S. Frixione, HCP’04)

MC issue #2: how to use NLO?
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MC@NLO
Studies with realistic experimental cuts for these processes: 
Single vector boson W, Z – no W/Z+jets yet!
Diboson WW, WZ, ZZ
Top pairs
Higgs
Lepton pairs

Top acceptance and kinematics at NLO
e.g. pT of ttbar system at the Tevatron

MC@NLO rate= NLO rate
MC@NLO and MC predicted shapes are identical 

where MC does a good job

Top anti-top asymmetry 
only at NLO

only at Tevatron

S. Frixione, P. Nason, B. Webber
hep-ph/0305252

MC issue #2: how to use NLO?
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D0 (pb)CDF (pb)Channel

<19 (16)<13.6 (12.1)s

<25 (23)<10.1 (11.2)t

<23 (20)<17.8 (13.6)s+t

95% C.L. limits Observed (Expected)

1 Lepton pT>20 GeV
MET>20 GeV
Exactly 2 jets ET>15 GeV |�|<2.8
	 1 b-tag
Mlvb [140,210] GeV

R.K. Ellis, J. Campbell hep-ph/0408158

Single top is kinematically
between 

W+jets and top pair production
NLO calculations for rate and shape 

very important, especially at LHC

t

s+t

Search for Single Top
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� Many different measurements

� Test different assumptions

� Compare to look for new physics

� Combination ~20% precision

� Currently statistics-limited

Top pair production: Summary
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� Does top decay always produce 
a b quark? 
R=BR(t�Wb)/BR(t�Wq) �1 

� Ratio of single/double b-tags 
sensitive to R

� Lepton+jets

� CDF: 0-tags provide powerful 
constraint

� Dilepton

� Lepton+jets NN

t
W

b
t

W

d,s,b

��= �b- �light= 0.44 ± 0.03

R>0.62 @ 95% C.L.

29.0

19.0

21.0
26.0

70.0

11.1

±=

±=

R

R CDF 161 pb-1

D0 169 pb-1

Top Decay: BR(t�Wb) �100%?
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Does top decay to a charged Higgs instead of a W?
Compare observed number of events in 3 final states

Lepton+� higherAll lower

Model dependent
Tree level

Top Decay: BR(t�H+b)?
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ttbar (V-A)
ttbar (V+A)
W+jets
QCD

 Run II Preliminary∅DDecay angle

� Assume F0=70%

� Set limit on V+A fraction

� F+<0.269 @ 90% C.L.

Standard Model is V-A theory: predicts W from top are
F0=70% longitudinal, F-=30% Left-handed

17.089.0 30.0
34.00 ±±=F

� Assume F+=0.0 (ie no V+A)

� Measure F0

� F0>0.25 @ 95% C.L.

“Who says it’s a fermion?”
Top squark could mimic final state but

W polarisation would be different

Helicity of W from top decays
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� Examine photon pT and angular distributions

� Measure tt
 coupling at LHC to 3-10%

� More difficult at Tevatron due to QED ISR from qq

� Difficult at e+e- linear collider to disentangle tt
 and ttZ

Standard Model top charge +2/3 implies t �W
+

b

Exotic top charge -4/3, then t�W
-
b instead!

U. Baur (DPF parallel session) 
A. Juste, L. Orr, D. Rainwater

Top Charge and tt
 coupling
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� Lepton+Jets

� Neutrino undetected
� Px, Py from energy conservation

� 2 solutions for Pz from Mlv=MW

� Combinatorics of 4 highest ET jets 
� 12 ways to assign jets to partons

� 6 if 1 b-tag

� 2 if 2 b-tags (beware of charm!)

� ISR
� Extra jets

� 4 highest ET jets not always from top decay

� FSR
� Poorer resolution if extra jet not included or 

jet clustering leaves no well-defined jet-
parton match

� Dilepton

� Lower statistics

� Two undetected neutrinos

� Fewer combinations – only 2 jets

� ISR/FSR as above

e-

b

c

b

s

�e

ISR

FSR

Final state from LO matrix element

What you actually detect

+underlying event from proton remnants
+ multiple interactions!

Top Mass: Reconstruction
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����(measurement|mtop)  =                                       ����(measurement|partons) ����(partons|mtop)����

MC + GEANT detector simulation + reconstruction

CDF II Preliminary 
(162 pb-1)
	1 b-tag

4th jet ET>8GeV

1 Lepton pT>20 GeV
MET>20 GeV
>3 jets ET>15 GeV, |�|<2.0

155 205

CDF II Preliminary 
(193 pb-1)

0 b-tag 
4th jet ET>21 GeV

2
top GeV/cm 1.77.176 0.6

4.5 ±±=

� Choose best combination and neutrino solution with a kinematic fit
� Mfit=mtop=mtop,  MW(lv)=MW(qq),  transverse energy of tt+X system

� Require �2 consistent with  hypothesis 

� Performance: correct combination 30%, incorrect 26%, ill-defined (ISR/FSR) 44%

� Parameterise reconstructed mass shape with MC
� top mass dependence – MC with different input top masses

� Background shape

� Maximise Likelihood

Top Mass: MC Template
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Partons with 
80<E<100 GeV

-40 0 +40

1 Lepton pT>20 GeV
MET>20 GeV
==4 jets ET>15 GeV, |�|<2.0
No b-tagging

����(measurement|mtop)  =                                       ����(measurement|partons) ����(partons|mtop)����

GEANT detector simulation + reconstruction LO matrix element

2

,

6

21

212

2

2

2

2

1

2

11 ||
||||

)()(
),(

1
M

qq

qfqf
yxWdMwdmdMdmdpP

comb

jettopwtopjet

tot
tt � �=

ν

φ
σ

Updated D0 Run I measurement

� Use LO matrix element…
� Exactly 4-jets for final state

� Background from W+jets VECBOS 

� …but LO matrix element needs partons
� 20 parameters to describe initial (2) and final state (18)

� Measure lepton momentum (3) and jet angles (8)

� Energy and momentum conservation (4)

� Integrate over 5 unknowns
� Choose W and top masses (4) and a jet momentum (1)

� Relate poorly-measured jet energies to partons with 
transfer functions from MC

� Advantages
� Use all 24 combinations – correct one always included

� Well-measured events carry more weight

� 2x statistical power!

� Systematic from jet energy scale reduced by 40%

(12,10)22ME ==4 jets and ����bkg

(16,55)71ME ==4 jets

(29,48)77Template �2 cut 

(top, bkg)EventsD0 91 events 	4 jets

Top Mass: Matrix Element
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178.0 ± 4.3
(old 174.3 ±5.1) 

World average
Run I only 

Nature 429 638-642 
06/10/2004

Run I

New world average
April 2004

hep-ex/0404010

2
top GeV/cm 9.36.31.180 ±±=

Top Mass: Matrix Element
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Experimental input
HF combination (LEP/SLC)

W mass combination (CDF/D0)
top mass (D0)

Theory input
Complete two-loop for MW

hep-ph/0311148
Fermionic two-loop for sin2�eff

lept

hep-ph/0407317

Changes since Summer 2003
Only use high Q2 measurements 
from LEP, SLC and Tevatron

Global Standard Model Fit



p. 54

MH=114 +69 – 45 GeV

MH<260 GeV @ 95% C.L.

Top mass and Higgs mass
70% correlated in SM

Vital to measure top mass well

SM constraint on Higgs boson mass
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Run II goal is 
2.5 GeV

per experiment

Dominant systematic
from jet energy scale

None of the Run II 
preliminary measurements

are in the world average

Top Mass: Tevatron Summary
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� Absolute energy scale is the key!

� Must tune Calorimeter simulation 
at single particle level

� Accurate material description 
important – extra from new Silicon

� New GEANT simulation

� New forward calorimeter

� Data 
-jet balance – statistics-
limited

� Relative response

� Data di-jet balance - calibrate 
relative to central

� Expect systematic to decrease soon

� Improved simulation

� Get smarter with more statistics

Jet Energy Scale
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� Much higher statistics…can reduce systematics

� Double b-tags: reduce background and combinatorics

� 87,000 top with S/B~78 with 10 fb-1

� Calibrate jet energy scale in situ using hadronic W decay!

� b-jets – achieve 1% calibration with Z+b?

� Precision 1 GeV per experiment

0.91.3Total

0.10.1Stat

0.10.1Combinatorial bkg

0.51.0FSR

0.10.1ISR

0.10.1b-quark fragmentation

0.70.7b-jet scale

0.20.2Light jet scale

Fitted 
δδδδMtop(GeV)

Hadronic
δδδδMtop (GeV)

Source of uncertainty

SN-ATLAS-2004-040

1 Lepton pT>20 GeV
MET>20 GeV

	 4 jets ET>40 GeV, |�|<2.5

2 b-tags

Wrong 
combination

chosen

Top mass @ LHC
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� What is �s?  Need to understand

� Beam energy spread

� Beamstrahlung

� ISR

� Scan cross-section at threshold for top 
pair production

� Theory calculation in good shape 

� Choose safe definition

� Ultimate limit of 100 MeV

� Top carries colour charge, mass not 
well-defined below 100 MeV

A. Hoang, hep-ph/0310301D. Miller, S. Boogert
http://www.linearcollider.ca/victoria04/

Top mass @ ILC
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� Important to test coupling between Higgs and top quark

� Combine LHC and LC for model independent measurement

� LHC: pp �ttH+X – measure �(ttH)xBR(H�WW) to 20-50%

� ILC:   e+e-�ZH  - measure BR(H�WW) to 2%

� Can do with 500 GeV Linear Collider

02.002.1
246

2
±==

GeV

m
g

top

ttH

2)( ttHgttH ∝σ

K. Desch
M. Schumacher
hep-ph/0407159

SM prediction is

Top Yukawa Coupling
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� Next few years shaping up to be very interesting

� Tevatron delivering high luminosities – expect 4-9 fb-1

� More W bosons and top quarks than ever before

� Precision measurements of top properties – is it really top?

� Very fruitful interaction between theorists and 
experimentalists

� NLO and beyond calculations important for precision 
measurements and searches for new physics

� Promote interaction between Tevatron and LHC

� Tev4LHC year-long workshop

� LHC first beam expected 2007, first physics 2008 

� ILC accelerating towards reality

Conclusions
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SM Higgs sensitivity
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ν

q q

�

44% 44% SemileptonicSemileptonic ������llνννννννν��

e+e- collider
Measured �s 

Trigger efficiency 100%  

WW pair production
10k events per experiment

q

q

q

q

46% 46% HadronicHadronic ����������

Direct reconstruction of W invariant mass
from W decay products. 
Improve resolution by kinematic fit with 
powerful constraints from E,P conservation

W’s decay 0.1 fm apart
Decay products 

can interact!

W mass at LEP
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Non-4q 4q

CERN-EP/2003-091

LEPEWWG/2003-02

80.411 ±±±±0.044
0.032 ±±±± 0.030

Similar statistical uncertainties
Trouble is…Final State Interactions in 4q

80.420 ±±±±0.107
0.035 ±±±± 0.101

W mass at LEP


